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The collapse time of a closed cavity 
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The collapse time of a closed cavity that is initially at  rest in an incompressible, 
inviscid fluid of density p and ambient pressure p a  has the form 

4 = (P/(Poo - P c ) P  p7 

where pc is the internal pressure, which is assumed to remain constant during 
collapse, and /' is a length that depends only on the geometry of the cavity. A 
variational formulation of the dynamical problem is constructed from Jacobi's 
statement of the principle of least action. A single-degree-of-freedom approxima- 
tion is developed from the similarity hypothesis that the cavity collapses through 
a family of similar surfaces with volume as the generalized co-ordinate. Two- 
degree-of-freedom approximations are given for both prolate and oblate sphero- 
idal cavities and are used to obtain error estimates for the similarity approxima- 
tion (approximately 2 yo for the limiting case of a needle-like, prolate spheroid 
and approximately 4 yo for a disk-like, oblate spheroid). A perturbation analysis 
is developed for an approximately spherical cavity, which is found to have the 
same collapse time as a spherical cavity of equal volume within a factor 1 + O(e4), 
where e is a representative eccentricity. A first-order correction for surface 
tension is obtained. 

1. Introduction 
We seek a rational approximation to the collapse time, say t,, of a closed cavity 

from an initial state of rest in an incompressible, inviscid liquid of density p 
and ambient pressure pa. We assume that the internal pressure of the cavity, 
say pc7 remains constant during collapse (0 < t < tJ ,  neglect gravity, and include 
surface tension only through the first-order correction of the following section. 
We also assume that the cavity surface is simply connected and smooth (has 
bounded curvatures at  every point) ; we would expect the subsequent approxima- 
tions to be suited primarily to smooth, convex cavities, but convexity is not a 
necessary condition for the general formulation. 

The motivation for our study is derived from water-entry cavities (Birkhoff 
& Zarantonello 1957, pp. 240-1; May 1952; May & Hoover 1965; and other 
references given there). The collapse sequences observed by May & Hoover, 
together with the measured collapse trajectories for spherical cavities (Birkhoff 
& Zarantonello, pp. 237, 238), suggest that our assumptions should provide a 
reasonable model for the estimation of collapse times of elongated axisymmetric 
cavities; however, the data presently available in the literature do not permit 
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significant comparisons with our theoretical predictions of collapse times for 
non-spherical cavities. We emphasize that, in any event, our assumptions are 
certainly inadequate, and are not intended for a discussion of the terminal motion 
of small cavitation bubbles, which may tend to strongly asymmetric shapes (cf. 
Benjamin & Ellis 1965). 

These last remarks notwithstanding, we present our analysis with the hope 
that the general formulation in $0 3 and 4 may be of interest for other aspects of 
cavitation. 

We infer from dimensional considerations that 

t, = {P / (Pm -PJP  e,  (1 .1)  

where 1 is a length that must be proportional to the product of a characteristic 
scale and a function of those dimensionless parameters that are required to 
describe the initial shape of the cavity. A convenient scale is provided by the 
equivalent spherical radius R,, as defined by 

Qo = Q(0) = 47~Ri/3, (1.2) 

B = & I f ( e , , e , ,  .‘.I, (1.3) 

where Q(t) is the instantaneous volume of the cavity. We then can write 

where el, e2, . . . are shape parameters; e.g. f = f ( e )  for a spheroid of eccentricity e. 
An explicit result appears to be known only for a sphere, for which B = @915R, 

(Lamb 1932, p. 122; Lamb refers the result to Besant 1859 and to Rayleigh 1917; 
Besant traces it back to the Cambridge Senate House Problems of 1847). Demt- 
chenko (1926) and Poncin (1939a, b )  have considered ellipsoidal cavities ‘without 
obtaining any simple results’ (Birkhoff & Zarantonello 1957). 

The time-dependent boundary-value problem, as determined by the equations 
of motion for the liquid, requires the satisfaction of two, non-linear boundary 
conditions on the (unknown) moving surface and appears to be rather intractable 
for other than a spherical surface. Accordingly, we develop an approximate 
formulation from considerations of energy and similarity. Our approximations 
will be of an increasingly ad hoc character as we proceed from the general to the 
particular, but we emphasize that our general formulation, in $5 3 and 4, yields 
an approximation to t ,  that should converge to the exact result as the number of 
degrees of freedom is increased. 

The potential energy, relative to the initial configuration, is given by 

= ( P m  -PJ (& - Qo)  (1.4) 

and is negative during the collapse. Remarking that 0 must be the total volu- 
metric flux across any surface enclosing the cavity and drawing an analogy 
between the cavity and a charged conductor bearing a total charge of & / 4 ~ ,  
we pose the kinetic energy in the form (cf. Rayleigh 1945, $304) 

T = +p(M/4n) Q2, (1.5) 

where M has the dimensions of inverse length. Following electrical terminology, 
we designate M as the elastance of the cavity. 
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Let q,, q2.. ., q N  be a set of generalized co-ordinates appropriate to the geo- 
metrical description of the instantaneous cavity and let (xo, yo, zo) be the co- 
ordinates of its centroid.? Then T must be a homogeneous quadratic function of 
xo, yo, So, q,, ..., qN with coefficients that depend only on q,, ..., qN and are deter- 
mined by a set of kinematically specified potential problems. Invoking the 
assumptions that there are no external force fields and that the liquid is initially 
at rest, we infer from impulse-momentum considerations that go, yo, k ,  must be 
linear functions of q,, ..., qN, in consequence of which T ,  and therefore MQ2, 
can be expressed as a quadratic function of q,, . . . , q,,,. We carry this calculation 
out in $ 3 .  

The fact that the potential energy depends only on the instantaneous volume 
suggests that we choose & or, more conveniently, 

q = (Q/Qo)* (1.6) 

as the dominant (i = 1)  co-ordinate. We then must choose the remaining co- 
ordinates to specify the instantaneous shape of the cavity e.g. in $ 5  below, we 
choose the instantaneous eccentricity as the second co-ordinate for an ellipsoid 
of revolution on the hypothesis that it collapses through a family of such surfaces. 

Having T and U ,  we could invoke Hamilton's principle to obtain a set of 
differential equations for q,, ...,qN. Actually, we find it more expedient to 
invoke conservation of energy at  the outset and to use the resulting integral 
of the equations of motion to reduce the number of degrees of freedom by one, 
after which we regard q, rather than t ,  as the independent variable in terms of 
which the remaining variables (q2, . . . , q N )  are to be expressed. We then can invoke 
Jacobi's formulation of the principle of least action to obtain either the differential 
equations for q2(q), . . . or a variational integral on which to base a suitable Ritz 
approximation. 

The energy integral, as implied by (1.4) and (1.5), is 

= ( P / f W  MQ2 + ( P m  -PA (Q  - Qo)  = 0. (1.7) 

Integrating (1.7) between (&, t )  = (Qo, 0) and (0 ,  t l )  and comparing the result with 
(1. l),  we obtain 

P = (8n)- fSQ'~M/(Q,-&)} 'd& 0 ( 1 . 8 ~ )  

(1.8b) 

To  complete the calculation, we must determine Mas  a function of q through the 
procedure outlined in the preceding paragraphs. 

We obtain a single-degree-of-freedom approximation to P by supposing that 
the cavity collapses through a one-parameter family of similar surfaces, as is 
exactly true for a sphere. Invoking the self similarity inherent in this approxi- 
mation, which we denote by an asterisk subscript, we infer that (since M is an 
inverse length) 

1 

0 
= 8 ( Q o / 8 n ) * ~  q * ( l - q 3 ) - ) M ~ d q  (MI = q M ) .  

MI, = qnl,  Mo, (1.9) 

f I an indebted to  Dr T. B. Benjamin for pointing out the possibility of centroidal 
motion of the deforming cavity, even in the absence of gravitational and other, external 
force fields (cf. Benjamin & Ellis 1965). 
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whereM, denotes the initial value ofM,. Substituting (1.3) and (1.9) into (1.8b), 
we obtain 

(Ma R:)-* P,  = ($)& 

= (+)& B(8, 4) = 0.915, (1.10) 
where B denotes a beta function. 

capacitance of the cavity; accordingly, 
We demonstrate, in 0 3 below, that Ma 2 l/Co, where C, is the initial, geometric 

P,  2 0*915(R,/C0)~ R, (1.11) 

provides a lower bound to the approximation (1.10)) although not necessarily to 
t (see (5.20) for a counter example). We designate the right-hand side of (1.11) 
as the electrostatic approximation to 1. We also demonstrate, in $3,  that the 
similarity approximation implies the electrostatic approximation for an ellipsoid, 
for which (1.11) therefore becomes an equality. This equality does not appear to 
hold for more general surfaces. 

We calculate two-degree-of-freedom approximations to M for prolate and 
oblate spheroidal cavities in $3 5 and 6 below and then use variational approxima- 
tions to obtain the corresponding results for P.  We surmise from these results 
that the similarity approximation is likely to be adequate for any smooth, convex 
cavity.t On the other hand, because of the identity anticipated in the preceding 
paragraph, the results of $95 and 6 do not provide any basis for judging the 
electrostatic approximation. 

Procedures for approximating C, are well developed in the literature of elec- 
tricity and magnetism and can be either applied directly to obtain the electro- 
static approximation to P or modified to obtain M .  For example, Rayleigh (1916) 
has shown that the capacitance of an approximately spherical surface is given by 

C, = R,[1 +O(e4)] (e + 0)) (1.12) 

where e is a representative eccentricity, say 

e = [I - (b/a)2]* (1.13) 

in terms of the minimum ( 2 b )  and maximum (2a)  diameters of the surface. 
Similarly, we demonstrate in 0 7 that 

P = 0.915R0[1 + O(e4)]. (1.14) 

We emphasize that this result involves neither the similarity nor the electro- 
static approximation. Indeed, on calculating the actual coefficient of e4 in the 
expansion o f t  about 0-915R0, we find that each of the similarity and the electro- 
static approximations is in error by O(e4) and therefore cannot be used to 

t It might be argued that the success of the similarity approximation is at  least partially 
a consequence of the relative insensitivity of the collapse time to the details of the motion 
during the final stages of collapse (4 + co as q -f 0). The force of this argument depends 
essentially on what is regarded as an appropriate scale; thus the integrand in (1.10) 
vanishes like q8 as q + 0, but is singular like x-6 as 17: + 0. 
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improve the approximation of (1.14) for an approximately spherical surface. 
We also remark that PoincarB's bound (Polya & Szego 1951, p. 17), 

(1.15) 

for any star-shaped surface, has no counterpart for 4 ,  which can lie either above 
or below 0-915Ro (see $5 below). 

The penultimate sentence does not, of course, apply to cavities that depart 
widely from a sphere, with very elongated (needle-like) and very flat (disk- 
like) cavities as opposite extremes, and the results of $55 and 6 provide ample 
support for the similarity approximation when e is not small, We also have 
obtained (unpublished) approximations for elongated, non-spheroidal cavities 
by invoking the slender-body technique that has been so widely exploited in 
aerodynamics, maintaining uniform validity in the neighbourhoods of the blunt 
ends by posing the potential problem in prolate-spheroidal co-ordinates and then 
letting the slenderness-ratio tend to zero (cf. Tuck 1964). This technique also 
could be extended to flat, non-spheroidal cavities by posing the potential problem 
in oblate-spheroidal co-ordinates. Our primary aim, however, is to provide a 
reasonably firm basis for the similarity approximation described by ( 1.9), 
( l . l O ) ,  (3.22) and (3.23). 

2. Surface tension 
We include surface tension, say CT, in our formulation by introducing the 

in place of (1.4); S denotes the surface area of the cavity. 
Let 

be a dimensionless measure of the relative importance or surface tension and 
pressure. We proceed on the hypothesis that the separate effects of surface 
tension and change of shape are small, 

\&-&*I/[* < 1, 8 < 1, (2.3) 

by virtue of which we can regard their interaction as a second-order effect and 
invoke the similarity approximation 

s = soq2 (2.4) 

in determining the first-order (in 6 )  correction to t .  

tion accordingly, we obtain 
Substituting (2.4) into (2.1) and modifying the analysis of the preceding sec- 

&* = (3&(04/2)~f'q*{(l 0 -q3) +€ ( I  -q2))-*dq. (2.5) 

This last integral can be expressed in terms of elliptic integrals, but it suffices 
for our purpose to remark that 



748 John W .  Miles 

converges uniformly with respect to q in q = (0,l)  for 8 < 1, and hence that 
f',(e) has a power-series representation as 6 -f 0. We therefore can approximate 

(2.7) 

(2.8) 

e, = (f+ )E-O [i - k€ + 0(€2)1, 
(2.5) by 

where k = a 1- Jol q3( 7 1 - q2) (1  - q3)-Q d g / j  qg( 1 - q3)-* dq = 0.37. 
0 

3. The elastance 
Let q,, q2, . . . ,qN be a set of generalized co-ordinates, as described in 5 1, let 

r be a position vector with respect to the centroid of Q0, and let r = ro(t )  specify 
the centroid of &(t). Remarking that q, = q specifies theinstantaneouslength scale 
we specify the surface of the cavity, say S ,  by the functional relation 

PW-ro) /g ,  q2, . . . ,qN1 = 0 ( r in  8). (3.1) 

(3.2) 

We emphasize that S does not determine F uniquely. The unit, outward normal 
to S is given by n = VPjIVPI, 

where V is the gradient operator with respect to r .  
We begin by regarding ro and the qi as functions of t (with qi = dqi/dt, etc.) 

and invoking the convention that repeated indices imply summation over 
i = 1,2, ..., N .  Our basic assumptions, that the liquid is inviscid and that the 
motion develops from an initial state of rest, guarantee the existence of a velocity 
potential, say #(r, t ) ,  that is a harmonic function of r in the infinite region bounded 
internally by S. The requirement that no fluid cross S implies the boundary con- 

(3.3) 

dition 
_ -  - &(aP/aqi) + (Vq5 -to). V F  = 0 (r in 8). 
DF 
Dt 

We next introduce the similarity transformation 

rl = ( r - r o ) j q ,  V, = ajar, = qV, (3.4a, b)  

m 7  t )  = fila3m-l,4), (3.4c) 

and regard ro, q2, . . ., qN as functions of q, rather than t .  Introducing the expansion 
(in which x is a three-component vector) 

ZL'(r1,q) = Po.x(r1,42, **.,qiv)+Pi1C'i(rl>Qz, . . . , Q N ) ,  ( 3 . 5 4  

Po = dr,/dq, p< = dq,/dq, (3.5b,c) 

together with (3.4), into (3.3), dividing the result through by alVl.1, invoking 
(3.2), and equating coefficients of po and pi, we can place the result in the form 

(3.6a, b)  

We observe that n, as given by (3.2), is invariant under the transformation of 
(3.4a, b )  and that, by definition, axIan and a$,/an are normal derivatives at the 
surface S,, where S, is the surface obtained from S through the scale transforma- 
tion ( 3 . 4 ~ ) .  We also observe that 

axjan = n, a ~ J a n  = hi = - q(aF/8qi) I V, F I -l. 

h, = -qlV,FI-l(aF/aq) = IV,FI-lr,.V,P = n.r ,  (3.7) 
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is the length of the perpendicular from the centroid of X, to the tangent plane a t  
r,; and that 

J ( a + / a R ) a s l  = h,as, = 3 ~ ,  = 4n~:,  s 

T = - &PI#(.. Vq5) dS, 

(3.8) 

which implies that, of the potentials x and $d, only $, contributes to the volume 
flux across any surface that contains S,, i.e. only +, contains a source term in 
its asymptotic representation. 

The kinetic energy of the irrotational motion specified by q5 is given by 

(3.9) 

where the surface integral is over S. Substituting (3.4) and (3.5) into (3.9) 
and taking the integral over S,  (dX = q2dX1), we can place the result in the form 

where 

( 3 . 1 0 ~ )  

n 

(3.11) 

is a dyadic that is proportional to the virtual mass that would characterize the 
cavity if it  were rigid; 

mi(q2, * . * , q N )  = -4 (n$i+xx(a$i/an)}dS1 ( 3 . 1 2 ~ )  

(3.12 b,c) 

is a vector that is proportional to the dipole moment of $( (cf. Benjamin & 
Ellis 1965; also Lamb 1932, $121a), and the alternative forms (3.12b, c) follow 
from ( 3 . 1 2 ~ )  by virtue of Green's theorem; and (the prime anticipates (3.15) 

(3.13) 
below) 

Invoking the requirement that the total impulse (which is initially zero) 
must vanish identically in consequence of the absence of external force fields, 

s 
= - { nllr,as, = - x(a@i/an) as, s 

m&(q,, . . . , qN) = - $ihjdS, = mii. s 
we obtain 

(3.14) 

Taking the scalar product of (3.14) with po and subtracting the result from (3. lo), 

T = 1  3 '2  ( 3 . 1 5 ~ )  
we obtain 

= +pq3q2mijpipi, (3.15 b )  

where mii = m&.--q.rn;l. mi (3.16) 

follows from the solution of the vector equation (3.14) through the inversion of 
the dyadic (essentially a square matrix) m,. This completes the process of ignora- 
tion of the centroidal co-ordinates (cf. Whittaker 1944, $38). 

Z P ~  4 ( ~ o * m i ~ i  +m;jPi~j)  
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Comparing (3.15b) and (1.5), we obtain 

qM = Ml = (47rR:)-l (p,, . mipi + ?+pipi)  ( 3.1 7 a )  
= (47rR:)-l miipipj. (3.17b) 

We also note that ( 3 . 1 0 ~ ~ )  implies 

H, = - (477R3-l $(a$/an) dS,. (3.18) 

Summarizing, we have reduced the determination of M to the following pro- 
cedure: (i) determine the harmonic functions x and $i that satisfy the boundary 
conditions (3.6) on the surface S, and appropriate null conditions at  inh i ty ;  
(ii) calculate m,, mi, and rnlj from (3.11)-(3.13); (iii) calculate p, from (3.14); 
(iv) calculate Ml from (3.17 a). This problem differs from the classical problem of 
determining the geometric capacitance of S,, say C,, in that $ is not constant on 
8,. If $ were constant on S,, we could regard it as the potential produced by a 
charge distribution of surface density (1/4n) (a$/an) totalling Ri, and conclude 

31, 2 l/C, (3.19) that N, = l/C,; in fact, 

by virtue of Gauss's principle that the minimum value of the right-hand side of 
(3.18), subject only to the constraints (3.8) and that $ be a harmonic function, 
is attained for the configuration of electrostatic equilibrium (Polya & Szego 
1951, p. 56). 

We can obtain a formal upper bound to Nl from Kelvin's minimum-energy 
theorem for an irrotational flow, namely 

M, 6 (47rR34f Iv12d7, (3.20) 

where the volume integral is taken over the domain bounded internally by S,, 
and v is any solution to 

n . v  = n.po+pihi, V.v = 0. (3.2 1 a, b )  

The bound provided by (3.19) is of some value as an approximation, but we have 
not found any direct application of (3.20). 

The similarity approximation invoked in 4 1 is based on the assumptions that 
$ depends only on the single co-ordinate q and that r, = 0.t Invoking these 
approximations in (3.6), (3.18), and (3.19), we obtain 

s 

and 

(3.22) 

(2.23) 

(3.24) 

Remarking that the boundary condition (3.22) is precisely that satisfied by the 
charge distribution on an ellipsoid (Jeans 1948), we infer that the similarity 

These two assumptions are independent. We could modify the similarity approxima- 
tion by including the centroidal motion implied by (3.14) with pi E 0 for i > 2; however, 
it appears unlikely that centroidal motion could be quantitatively significant for any cavity 
for which the assumption of a collapse through a family of  similar surfaces affords an 
adequate approximation. 
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approximation implies Mo = l/Co for an ellipsoid. It appears most unlikely that 
(3.22) describes the charge distribution on surfaces other than ellipsoids, but we 
have not been able to obtain a general proof of this (negative) conjecture. We 
consider the departure of M, from l/Co for non-ellipsoidal cavities in 9 7.  

4. Variational formulation 

action, namely that the integral 
We now proceed to a variational formulation based on the principle of least 

d = 2  Tdt (4 .1)  SII‘ 
is stationary with respect to first-order variations of each of the generalized 
co-ordinates about the true solution of the equations of motion. Substituting 
T into (4.1) from (1 .5)  and then eliminating 4 with the aid of the energy integral 
(1 .7) ,  we obtain 

&‘ = (p /4n- )1Q0M4dQ 0 ( 4 . 2 ~ )  

(4.2b) 

where (4 .3 )  

We then have the following variational problem: determine l‘, as given by (1 .8  b),  
subject to the variational condition 

6J = 0. (4 .4 )  

Requiring J to be stationary with respect to the independent variations 
Sq,, i = 2, ..., N ,  we obtain 

We remark that the weighting function q%( 1 - q3)# vanishes at  the end-points 
q = 0 and q = 1, by virtue of which 6qi need not vanish at  these points. We also 
note that the assumption that the motion begins from a state of rest implies 

(4 .6 )  

The differential equations (4.5) could be solved numerically (special attention 
would have to be paid to the singular points at  q = 0 and q = 1 ) ;  on the other hand, 
analytical solutions in terms of known functions do not appear to exist for non- 
trivial configurations. We therefore find it expedient, in the subsequent develop- 
ment, to introduce approximate representations of the form 

qi = qpi - ( 1 - (#pi + 0 (q  + 1 ) .  

qi = qi(q,ai, bi ...) (i = 2, ..., N ) ,  (4 .7 )  

where ai, bi, ... are free parameters, and to determine the optimum values of 
these parameters by requiring 

aJ/aa, = aJ/abi = ... = 0. (4.8) 
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Note on principle of least action 

Substituting Mfrom (3.17b) andE- Ufrom (1.4) and (1.7)into (4.2b), weobtain 

where 

(4.9) 

(4.10) 

is the kinematic line element in the phase space (q,q2, ...), and E = T + U is the 
total energy (E  = 0 in the present application). This is Jacobi’s formulation of * 

the action integral (Synge 1960, p. 139). 
We also note that (4.5) could be derived from Lagrange’s equations with the 

energy integral as a constraint to reduce by one the number of degrees of freedom 
(Whittaker 1944,s 42) after the ignoration of r,,. However, quite aside from the 
fact that we wish to appeal directly to the variational integral to obtain approxi- 
mate solutions, the derivation of (4.5) from Jacobi’s formulation of the principle 
of least action appears both more aesthetic and more direct (cf. Whittaker’s 
derivation). 

5. Prolate spheroid 
We now apply the general formulation of the preceding sections to a prolate 

spheroidal cavity. Let R, be the equivalent radius defined by (1.2) and 6 be the 
slenderness ratio (minor axis/major axis) of the initial configuration; then the 
initial values of the major and minor semi-axes and of the eccentricity are given 

a = &*R,, b = &R,, e = (1 - P)*. (5.1) 
by 

We invoke the two-degree-of-freedom approximation that the cavity collapses 
through a family of prolate spheroids with fixed centroid (r, = 0 by virtue of 
symmetry), which can be specified by two generalized co-ordinates. It is con- 
ceivable that the cavity might pass through a spherical shape to a family of 
oblate spheroids; however, this contingency is covered by the mathematical 
formulation and would be signalled by a zero of the eccentricity. 

We begin by introducing the spheroidal co-ordinates 5 and p according to 

2 = ccp, w = C(p-l) .ql-p2)*,  (5 .2 )  

where z and ware cylindrical polar co-ordinates and cis  a time-dependent length. 
Let 6 be the inverse eccentricity of X; then 5 = t on S. The instantaneous volume 
is given by 

&(t)  = ( 4 4 3 )  c 3 t ( t 2 -  1) = (47d3) (R0qI3, (5.3) 

which implies c = c(q,E) = R0q-3(t2- 1)-*. (5.4) 

Choosing our two generalized co-ordinates as q and 6 and referring to (3. l), we 
define 

F(rl,q,t)+ 1 = R,-2{(1-6-2)~z21+(1-6-z)--bw~} ( 5 . 5 ~ )  

= (5/t)2pz+(t2--1)-11f;2-l)(1-trL2), (5.56) 

where z1 = z /q  and wl = w/q. 



The collapse time of a closed cavity 753 

Invoking the general formulation of $3  (we emphasize that the partial deri- 
vatives aB'/aq and aF/at that enter this general formulation must be evaluated 
with z and w, not Sand ,a, fixed), we reduce (3.6) to 

(5.6) 1c'clc=g = - % t 3 ( t  2 1  2 - [I-  ~KP~(P)I, 

where P2(,a) is a Legendre polynomial, and 

K = +qt-l(p- 1)-1(dt/dq) 

= gd log (1 - [-2))/d log q. 
( 5 . 7 ~ )  

(5.7b) 

We observe that (1 - k2)* is the instantaneous slenderness ratio. Recalling that 
the most general solution to Laplace's equation that satisfies a null condition at 
6 = co has the form m 

0 
?b = c A,&,(C) Pn(Cc), 

we obtain 1c' = Rt t'(tz - [{&o(C)/&X)}  - 2~(&2( C)/QZ)lp2(~)1 (5-9) 

15.8) 

as the solution implied by the boundary condition (5.6). 
Substituting (5.6) and (5.9) into (3.18), we obtain 

= ~lT1(go(t) ++K2g2(t% (5.10 b) 

where sn(5) = - tQ?- 11-3 Q,(tw?'(t). (5.11) 

We can infer from the known properties of &,(t) (Hobson 1931) that g , ( c )  has 
no zeros in a complex plane cut along ( - 03, + 1). 

Setting 5 = l/e and K = 0 in (5.10b), we obtain the similarity approximations 

(5.12a) 

= 1 -&e4+ O(e6) (e + 0) (5.12b) 

= SDlog (2/S) (1 + O(S2)) (6 -+ 0) ( 5 . 1 2 ~ )  

and P, = 0*915(R0/C0)*R0. (5.13) 

To obtain a two-degree-of-freedom approximation to 4, we must determine 
((4). The differential equation obtained by substituting (5.10) into (4.5) is in- 
tractable, but we have carried out a variational approximation based on the trial 

(5.14) 
function 

log {( 1 - e2)/( 1 - t - z ) }  = k( 1 - y3), 

with k determined by the minimization of J .  The calculation is lengthy, and the 
result for P is a rather complicated, albeit algebraic, function of e ;  accordingly, 
we present only the limiting approximations (below) and the intermediate point 

4 = 1.032P, = 1.027(0.915R0) at  e = 0.8. (5.15) 

R,M,, = Ro/Co = Be-l(l-e2)~log((l+e)/(l-e)} 

The limiting result as e -+ 0 is especially simple and yields 

4 = P,(l+ 0-0944e4+ 0.0274e6 + O(e*)}  (5.16a) 

(5.16 b) = 0.915h?,(1+ 0-0833e4+ 0.0108e6 +O(e*)}. 
48 FIuid Mech. 25 
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We conclude that 0.915R0 provides an excellent approximation to !‘for sufficiently 
small e and that I approaches both e,  and 0.915R0 from above as e + 0. The 
terms in e4 and e6 in (5.16b) are less than 0-01 and 0.0005, respectively, for 
e < 0.59. 

The limiting case e + 1 yields 

4 = e,(l-0.037(1--&,-1)2(1-z2.25&,-1- i.i2&;2) (1- 1.89~,+0.59~;2)-2 

+ O(S2)} (6 + 0 ) ,  (5.17) 

where e, = 0.9156+~,{iog ( zp ) }+  (1 + o(62)) (5.18) 

and Qo = Qo(1le) = Uog{(l +elk1 -41 (5.19 a) 

(5.19b) = log (26) + O(62). 

We also note the limiting approximation 

e + 0.973e, (log ( z p )  + a}. (5.20) 

We recall, (5.1)’ that 6fRo = b is the initial value of the minor semi-axis. The 
correction provided by (5.20) is not accurate for realistic values of 6-e.g. (5.17) 
yields P = 0-984t, for 6 = 0-l-but it does reveal that P < I ,  as e + 1, in contrast 
to the result for e -+ 0. 

We remark that the logarithmic singularity in both P and P, as S -+ 0 is typical 
of any slender cavity. It follows that two-dimensional analysis, such as that given 
by Poncin (1932) for the collapse of a cylindrical cavity of elliptic cross-section, 
must yield infinite collapse times. The difficulty arises from the well known fact 
that the inertia of a two-dimensional, radial flow is infinite (cf. Benjamin 1964). 
There may be contexts in which this difficulty is of only secondary importance 
(as in Benjamin’s discussion), but it clearly is crucial in the present context (cf. 
the difficulty of calculating the supersonic drag on a slender body of revolution). 

6. Oblate spheroid 
We consider next an oblate spheroidal cavity, following closely the analysis 

of the preceding section. Let 6 be the ratio of minor to major axis, as before (but 
nowJlatness ratio is a more appropriate term); then 

a = 6-iRo, b = 6$Bo, e = (1 -a2)*. (6.1) 

2 = ccp, w = c ( l + p ) + ( l + ) f ,  c = R,q[-+(l+p-f, (6 .2 )  

Introducing the oblate ellipsoidal co-ordinates c and p according to 

where 5 = [ on S, we find that HI is given by (5.10b) if only (5.7) and (5.11) are 

(6.3) 
replaced by 

K = i d  log ( 1 + [-2)+? log q 

and 9,(8 = iW+ t2)-% Q ; ( i t ) / Q m ( G J ,  i = ( - 1)*. (6.4)1- 

to = (e-2- 1)f = S/e. (6.5) 

We also find that the instantaneous eccentricity of the oblate ellipsoid is given by 
(1 + c2)-4, so that 

t This is the only point in our analysis at which i denotes the imaginary unit. 
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We consider further only the limiting cases e -+ 0 and e -+ 1. We find that 
(5.16a, b )  continue to hold (within the same variational approximation) in the 
former limit through O(e4) by virtue of the fact that the asymptotic approxima- 
tions to the respective results for Nl are identical through terms of 0([-4) as 
(+ co. See also (7.28) below. 

Letting 6 -+ 0, we obtain -~ 

The corresponding approximation to the initial condition on ( is 

( = 6  ( q =  1 ,6 -+0) .  (6.7) 

These last results suggest the trial function (at this point, our analysis departs 
from that of $5)  

[ = 6q3k. (6.8) 

Substituting (6.6) and (6.8) into (4.3), we obtain 

Equating aJ/ak to zero, we obtain 

(6.10) 

where 31. is the logarithmic derivative of the gamma function. Solving (6.10) 
numerically, we obtain k = 1-27. Substituting this result, together with (6.6) 
and ( 6 4 ,  into (1.8b) we obtain 

e = i.ooae, (6 -+ 0 1 ,  (6.11) 

where e, = o.g15(n/2)*67)R, = 0 . 9 1 5 ( 7 ~ ~ $ ~ ) 3  (6 + 0) .  (6.12) 

We conclude that t, provides an approximation to e with an error of about 
0.4 % in the limiting case of a disk-shaped cavity. This compares with the error 
of about 2.7 yo for the limiting case of a needle-shaped cavity (see (5.20)). 

7. Approximately spherical cavity 
The analysis of an approximately spherical cavity is expedited by the intro- 

duction of spherical harmonics. We consider the surface of revolution specified 

and R(P)  = 1 + aipi(p) ,  p = cOs e, (7-2) 

where P, r,, and qg are defined in $ 3,B is the polar angle between rl and the axis 
of symmetry, and Pi(,u) is a Legendre polynomial of order i. The assumption of 
axial symmetry is not essential; see (7.29) et seq. 

We suppose that 

a1 = O(e4), qi = ai = O(e2) (i = 2, ..., N ) ,  ( 7 . 3 ~ ~  b) 

where e is the eccentricity of (1.13). The constraint that the volume of S, be 

(7.4) 
4nRi/ 3, 1 1 

Q = $r/ -1 r3dp = 2nRi/ -1 A d p  

48-2 
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independently of qz, . . . , qN, is satisfied exactly by our choice of the leading term 
in the Fourier-Legendre expansion (7.2). The constraint that the centroid be 
at the origin is satisfied approximately by virtue of (7.3a), which implies that 

puR*(p) dp = O(e4R:). (7.5) 

Referring to (3.5) and (3.6) and anticipating that 

p0 = O(e4R0), (7.6) 

( 7 . 7 4  

= 3r; +R;qpi(an/aqi) (7.7b) 

we write the boundary condition on $ in the form 

1VF1 (a{!/&) = V I F . V l @  = rl.VIF-qpi(aF/aqi) 

= 3 ~ 3 , { 1 + ( ( 4 ~ + ~ q ~ ~ ) ~ + o ( e ) * } ,  ( 7 . 7 4  

where i = 1 is omitted in the summation of ( 7 . 7 ~ ) .  Invoking the constraint (3.8), 
which implies that the mean value of $ over any spherical surface that contains 
S, must be - R;/r,, we expand $ in spherical-harmonics according to 

$ = - (Gh) c1+ Aiwo/rlY a41. (7.8) 

Forming the scalar product VIF.Vl$ from (7.1) and (7.8), and setting rl = BOA* 
in the result, we obtain 

v l F . v l $  = (aF/ar,) (a$/arl) +r;2(i -p2) (aF/ap) (a@/ap) ( 7 . 9 4  

= 3R3,[1+ (i + l ) A i P , ( p )  (1 + O(e2) } ] .  (7.9b) 

Comparing ( 7 . 7 ~ )  and (7.9b) and invoking (7.3) and the orthogonality of the 
Legendre polynomials over p = ( -  1, l ) ,  we obtain 

A,  = O(e4), Ai = ( i+1)-1(qi+Qqpi)(1+O(e2))  (i = 2, ..., N ) .  (7.10a,6) 

Remarking that the dipole moment of 4 is proportional to A,  and referring to the 
statement immediately following (3.13), we infer (7.6) from (7.10a). 

Substituting $ from (7.8), a$/& from (7.7c), and 

dSl = gnlVIFldp 
into (3.10), we obtain 

R, HI = - (477R3-l ?,h(a@/an) dXl s 
(7.11) 

(7.12a) 

1 

-1 
= :I ( l - + q i P , + ~ ( q i q j ~ ~ ) } ( l + A i P , ( l - ~ i q j ~ ) : ) )  

x ( 1  +(qi+Qqpi)P,}dp+O(e6). ( 7 . 1 2 ~ )  
Invoking the orthogonality relation 

*I1 P , q d p  = ( Z i + l ) - - l ~ ? ~ ~ ,  (7.13) 
-1 
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we reduce (7.12 c) to 

where 

(7.14) 

(7.15) 

is the corresponding approximation to the inverse capacitance of 8, (Rayleigh 
1916). We remark that each of the series in (7.14) and (7.15) is positive definite, 
as required by (3.9) and (1.15), respectively. The summations in (7.12) and 
throughout the remainder of this section are over i = 2 ,  . . . , N .  

Substituting (7.14) into (1.8b) and (4.3) and introducing x = p3, we obtain 

(7.16 b) 

( 7.1 6 c) 

and s-&(l -x)4{1+ (i + 1)-l (2i  + l)-lfi(x) +O(e6)))dx (7.17a) 

= B(g, #) + &(i + 1)-1(2i + 1)--l4 + O(e6), 

where 

(7.178) 

and 

fi(2) = (Xdqi/dx)~--(i-2)5qi(dQi/ax)- ( l i i 5 ) q ?  ~ 

( i =  2 ,..., N ) ,  (7.18) 

x-*( 1 - x)-&&) dx, (7.19) 

(7.20) 

The approximations (7.16 b) and (7.17 b) follow only after interchanging the order 
of expansion of the integrands in e2 and integration with respect to x and are, 
therefore, provisional (see below). 

We consider briefly the behaviour of qi(q), as determined by the Euler equa- 
tions of (4.5); our aim is to illustrate the implications of the singular points at 
q = 0 and q = 1, rather than to provide a direct basis for numerical computation. 
Substituting Ml from (7.14) and (7.15) into ( 4 4 ,  introducing x = q3, and linear- 
izing in qi (or, equivalently, forming the Euler equations implied by the require- 
ment that (7.17 b) be stationary), we obtain 

x 2 ( l - x ) ~ + ( ~ - ~ x ) x - + ( ~ i - ~ x ) q i  d2q. dq, = 0 (i = 2, ..., N). (7.21) 
a x 2  ax 

Transforming (7.21) to the hypergeometric equation and invoking the initial 
conditions of (4.6), we obtain (we omit a considerable amount of analytical detail 
throughout the present paragraph) 

( 7.22 a) 

(7.22b) 

(7.23) 

qi(q)/qi(l) = x-W+T(&+v, -&+v; 4; 1 -x) 
= Re{[r(+) r( -z~) / r (&-v)  r( - ' -V)]X-(+~+Y 1 2  

x P(& +Y, -&+v; 1 +2v;x)), 

y = -L (25 - 24i)i where 
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is an imaginary number (for i 3 2 ) ,  F is a hypergeometric function, and Re { 1 
is the real part of (}. We infer from ( 7 . 2 2 ~ )  that the solution for qi(x) implied by 
the antecedent approximations-in particular, the linearization of the Euler 
equations-is regular, and therefore uniformly valid, in the neighbourhood of 
the singular point at x = 1 (t  = 0). On the other hand, we infer from (7.22b) 
that this solution is not uniformly valid in the neighbourhood of x = 0; indeed, 
substituting (7.22b) into (7.18), we find that 

f&) = O[x-~cos(2~v~logx+C)] ( x + 0 ) ,  (7.24) 

where C is a real constant. Substituting (7.24) into (7.19) and (7.20), we obtain 
divergent, although finite, integrals (we could circumvent these divergences by 
the artifice of replacing the exponent - & in (7.22) by -a and letting a --f (A) - 
after carrying out the integrations, but, even then, the integrals are intract- 
able). 

The growth of small perturbations of a spherical cavity has been calculated 
by Plesset & Mitchell (1955), and our (7.82) is equivalent to their (29); see also 
Birkhoff & Zarantonello (1957, p. 253). This predicted instability is quite weak 
and may be eliminated by viscosity; in any event, it  does not appear to have any 
substantial effect on the collapse times of a spherical bubble (Birkhoff & Zaran- 
tonello 1957, p. 237), presumably in consequence of the rapidity of the final 
portion of the collapse trajectory. 

The preceding results suggest that suitable trial functions for direct, varia- 
tional approximations can be constructed as expansions about x = 1, even though 
such expansions may not be uniformly valid near x = 0. The exact behaviour of 
qi as x + 1 is given by ( 7 . 2 2 ~ )  as 

(7.25) 

this suggests that the simplest trial function should be linear for i > 2 but quad- 
ratic for i = 2 .  The integrals obtained by substituting such trial functions in 
(7.18)-(7.20) can be expressed in terms of beta functions and are algebraic 
in the coefficients of the trial functions (cf. $$ 5 and 6). We emphasize that there 
is no reason to expect that these coefficients, as determined by the requirement 
6J = 0, should agree with these given by the power-series expansion indicated 
by (7.25); the variational approximation aims at fitting the solution over the 
entire interval, x = (0, l) ,  whereas truncation of the true power-series solution 
typically yields a good approximation only near x = 1. 

qi(q)/qi(l) = 1 -$(i - 2) (1 -x) +0(1 -x)2  (x + 1);  

Let us consider the prolate spheroid of $ 5, which is specified by 

r = R,( 1 - [-2)h (1 - g--2p2)-* (7.26) 

in the spherical polar co-ordinates of the present section (we emphasize that 
,u is now defined differently than in 5 5, but l / g  is still the instantaneous eccen- 
tricity). Expanding (7.26) in Legendre polynomials, we obtain 

q2 = g-2, qi = og-4) ( i  > 2 ) .  (7.27a, b )  

Substituting (7.27) into (7.14) and (7.15), weobtain 

(7.28) 
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in agreement with (5.106) through terms of O([-4). The corresponding approxima- 
tion implied by (5.14) and (7.16)-(7.20) reduces to (5.16b). 

To generalize our results to an asymmetric cavity, we need only replace 
P,(p) in (7.2) et seq. by the more general surface harmonic Xi and (2i+ 1)-1 in 
(7.14) and (7.15) by the mean-square value of Si. We can bring our expansions 
into standard form (for spherical surface harmonics) by modifying our notation 
for the generalized co-ordinates according to 

C i Pi(p){q~~cos(jO)+pBsin(jO)}], (7.29) 

i=2 j-1 

where the total number of generalized co-ordinates-q, q2, . . . , q N ,  ps1, (e) . . . , qNAv (0) 

-is now 
N 

(7.30) 

rather than N ,  and the three surface harmonics Pl(,u), Pi(,u) cos 4 ,  and P:(,u) sin 4 
are omitted in order to  place the centroid at  the origin (with an error of O(e4)). 
We find that 

-23- (7.14 a)  
1 N i (i+ l)! {(i- 2)q$j -p@}2 

lsR,%z2iz1 (i -j)! (it- 1) (2i + 1) ' 
1 N i (i+j)! (i- l){q$)>' 

. moiz2 jzl (i -j)! (2i + 1) ' , (7.1 5 a)  

and similar series in pig), must be added to the right-hand sides of (7.14) and (7.15). 
The corresponding generalizations of (7.16)-( 7.20) are obvious. 

8. Conclusion 
We conclude that the similarity approximation (l.lO), with M, calculated 

according to (3.22) and (3.23), is likely to be adequate for most applications in 
which our basic assumptions (stated and discussed in the opening paragraph of 
5 1 above) can be regarded as valid. 

This research was partially supported by the Office of Naval Research under 
Nonr contract 2216( 29). 
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